Basic definitions, division and correlations
Types of responses upon the nutrition
Nutrition and their influence on the genome with examples
Nutrigenomics in genetic variation & epigenetics
Types of diseases
Future perspectives
Conclusions and discussions
NUTRITIONAL GENOMICS

NUTRIGENOMICS

NUTRIGENETICS
GENETIC VARIATION

PHENOTYPE

EPIGENOME

NUTRIENTS

Gene expression

GENETIC RESPONSE

NUTRITIONAL RESPONSE
<table>
<thead>
<tr>
<th>GENETIC RESPONSE</th>
<th>NUTRITIONAL RESPONSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Effect on genome evolution</td>
<td>• Effect on nutrients absorption</td>
</tr>
<tr>
<td>• Mutation</td>
<td>• Nutrients utilization and requirement</td>
</tr>
<tr>
<td>• Selection</td>
<td>• Food/nutrient tolerance</td>
</tr>
<tr>
<td>• Programming</td>
<td>• Food atopies</td>
</tr>
<tr>
<td>• Viability</td>
<td></td>
</tr>
<tr>
<td>• Gene expression</td>
<td></td>
</tr>
<tr>
<td>• Chromosome stability</td>
<td></td>
</tr>
<tr>
<td>• Signal transduction and metabolic</td>
<td></td>
</tr>
<tr>
<td>pathways</td>
<td></td>
</tr>
<tr>
<td>• Protein synthesis and structure</td>
<td></td>
</tr>
<tr>
<td>• Epigenetic events</td>
<td></td>
</tr>
<tr>
<td>• Chronic diseases</td>
<td></td>
</tr>
</tbody>
</table>
NUTRITION AND THEIR INFLUENCE ON THE GENOME

- Niacin – a polymerase poly(ADP)-rybose substrate which controls the telomeres structure
- Zinc – a cofactor of many antioxidant enzymes and endonuclease IV and also a component of glycosylase OOG I that removes 8oxoG
- Magnesium – polymerases cofactor involved in DNA repair and DNA replication
- Choline – affects methylation of CpG islands and prevents DNA damage
- Vitamin C and E – inhibit oxidation of nucleotides
- Calcium – inhibits the chromosome breakage
Table 2. Examples of the role and effect of specific micronutrients deficiencies on genomic stability.

<table>
<thead>
<tr>
<th>Micronutrients</th>
<th>Role in genomic stability</th>
<th>Consequence of deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vits C and E</td>
<td>Prevention of DNA and lipid oxidation.</td>
<td>Increased baseline level of DNA strand breaks, chromosome breaks, oxidative DNA lesions and lipid peroxide adducts on DNA.</td>
</tr>
<tr>
<td>Vit D</td>
<td>Antioxidant activity by increasing glutathione level in normal cell, induction apoptosis in cancer cells.</td>
<td>uracil misincorporation in DNA, increased chromosome breaks and DNA hypomethylation.</td>
</tr>
<tr>
<td>Folate and Vits B2, B6, B12</td>
<td>Maintenance methylation of DNA, synthesis of dTMP from dUMP and efficient recycling of folate.</td>
<td>Increased level of unrepaired nicks in DNA, increased chromosome breaks and rearrangement, sensitivity of mutagens.</td>
</tr>
<tr>
<td>Niacin, Nicotinic acid</td>
<td>Maintenance and DNA repair</td>
<td></td>
</tr>
<tr>
<td>Zn, required as a cofactor for Cu/Zn superoxide dismutase, endonuclease IV, P53 function, DNA replication and Zinc finger proteins such as poly (ADP-ribose) polymerase.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc, Manganese and Selenium</td>
<td>Mn, required as a component of mitochondrial Mn superoxide dismutase.</td>
<td>Increased DNA breaks and oxidation, elevated chromosomal damage rate.</td>
</tr>
<tr>
<td>Se, required as a component of peroxidases e.g. glutathione peroxidase.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Required as a component of ribonucleotide reductase and mitochondrial cytochromes.</td>
<td>Reduced DNA repair capacity, increased propensity for oxidative damage to mitochondrial DNA.</td>
</tr>
<tr>
<td>Mg, required as a cofactor for a variety of DNA polymerases, in nucleotide excision repair, base excision repair and mismatch repair, essential for microtubule Polymerization and chromosome segregation.</td>
<td>Reduced fidelity of DNA replication, reduced DNA repair capacity, chromosome segregation Errors, survival of genomically aberrant cells.</td>
<td></td>
</tr>
<tr>
<td>Magnesium, Calcium</td>
<td>Ca, plays an important role in chromosome segregation and is required for apoptosis.</td>
<td></td>
</tr>
</tbody>
</table>
GENETIC VARIATION IN NUTRIGENOMICS

- Connected with human migration from east Africa in waves through 6 continents
- The successive splitting off a portion of the gene pool decreased genetic diversity in the migrating group
- Food availability and other factors contributed selective pressures for specific gene variants during migration and dispersal into new environments.
 e.g. lactose intolerance
Diet-informed epigenetic modifications of chromatin (DNA methylation and histone acetylation) that can alter gene function and long term health outcomes.
DISEASES

- Adrenoleukodystrophy
- Diabetes, type 1
- Gaucher disease
- Glucose galactose malabsorption
- Hereditary hemochromatosis
- Lesch-Nyhan syndrome
- Maple syrup urine disease
- Menkes syndrome
- Niemann-Pick disease
- Obesity (PPAR-α)
- Pancreatic cancer
- Phenylketonuria
- Prader-Willi syndrome
- Porphyria
- Refsum disease
- Tangier disease
- Tay-Sachs disease
- Wilson's disease
- Zellweger syndrome
FUTURE PERSPECTIVES - DIETARY RESTRICTIONS

- Restricted diet = longevity
- Restricted diet = prevent diseases
- Short-term restricted diet = decrease risk of heart diseases and stroke
CONCLUSIONS & DISCUSSIONS

- Lead to cancer development
- Diet has an influence on the every step of gene expression (genome, transcriptom, proteom, metabolom)
- Personalized diet as a good way to improve health
CONCLUSIONS & DISCUSSIONS
WHY IT IS IMPORTANT?

- Common dietary chemicals act on the human genome in indirect or direct way, to alter gene expression and/or structure
- Diet can be a serious risk factor for a number of diseases for some individuals
- Some diet-regulated genes are likely to play a role in onset, incidence, progression and/or severity of chronic diseases
- The balance between healthy and diseases state may depend on an individuals genetic background
THANK YOU FOR YOUR ATTENTION!

ANY QUESTIONS?
REFERENCES

- Table 2: DD.Farhud, M Zarif Yeganeh, Nutrigenomics and Nutri genetics, Iranian J Publ Health Vol.39 No.4,2014,pp.1-14
- Figure 1: http://lifegenetics.net/wp-content/uploads/2012/09/nutrigenetics-220x143.jpg
- Figure 2: http://lens.auckland.ac.nz/images/4/4b/Food_iStock_00006063737Small.jpg
- Figure 3: http://medcitynews.com/wp-content/uploads/good-nutrition-for-health-588x389.jpg
- Figure 4: http://upload.wikimedia.org/wikipedia/commons/d/dd/Epigenetic_mechanisms.jpg
- Figure 5: http://www.csupomona.edu/~nutrigenomics/images/nutrigenomic_logo.jpg
- Figure 6: http://mydietclinic.com/wp-content/uploads/2012/08/7Nutrient-Gene.png
- Figure 7: http://www.discoverymedicine.com/Richard-Chahwan/files/2011/03/discovery_medicine_richard_chahwan_no_58_figure_1.png.html?id=2|attachment_16
- Figure 8: http://www.living-smarter-with-fibromyalgia.com/images/dna.jpg

Articles:

- http://ajcn.nutrition.org/content/83/2/436S.full#sec-7
- Chahwan RI, Wontakal SN, Roa S. The multidimensional nature of epigenetic information and its role in disease., 2010
- M. Muller, S. Kersten, Nutrigenomics: goals and strategies, Nature Reviews 2003
- B. Liu, S-B Qian, Translational Regulation in Nutrigenomics, Americal Society for Nutrition 2011
- DD.Farhud, M Zarif Yeganeh, Nutrigenomics and Nutri genetics, Iranian J Publ Health Vol.39 No.4,2014,pp.1-14